smiths interconnect

bringing technology to life

Modular Interconnect for Point to Point and Backplane Space Application

Richard A. Johannes, P. Eng, Chief Technologist

This presentation is an unpublished work, created in 2018 by Smiths Interconnect, all rights reserved and may contain data that is subject to national export controls. Accordingly, it should not be re-used or transmitted without the prior written approval of Smiths Interconnect.

ELARA - Modular Interconnect

- Light weight, high density cable to PCB and cable to cable interconnection
- Designed to support data rates up to 10 Gbps
- Standard housings are based on 4 and 8 bay configurations
- Standard materials include aluminum and conductive composite for housings with gold over nickel for space
- Alternate plating options under evaluation include nickel only and unplated (conductive composite only) – dependent on environmental and EMI/RFI performance requirements

requirements

Requirement	ELARA		ELARA
Ruggedness	Hyperboloid	М	ass
High Speed (>6.25 Gbps)	10.0 GBPS + min	W	idth
High Density Cable Contacts	Yes	He	eight
Modularity	Yes	Тс	tal Length
Interchangeable Modules	Yes	M	odules Curr ⁄ailable
Low Mass	Yes	M Q	odules Curr ualified
Efficient RF Cable Assembly	Yes	Tv	vinax Cable
Space Qualified Materials	Yes	(D	(Dimensions)
PCB Termination	Multiple Options		

ELARA 8 Twinax	Module Comparison
Mass	~28 g
Width	29.1 mm
Height	14.5 mm
Total Length	41.2 mm
Modules Currently Available	Twinax, 4x5A Power, 10 contact signal, Fiber Optic
Modules Currently Space Qualified	All planned Family approach which enables future flexibility
Twinax Cable Supported	28 AWG Cable

(3mm x 2mm)

insertion loss

~50% less mass than the 24

AWG cable, yet higher

EPXB/38999/ELARA Contact Density Comparison

96 (3.78) 10 (.39) 96 (3.78)

D38999

4 shells #23 with 100 contacts

- Total contacts: 400
- Total surface: 96.00 * 96.00
- $= 9216 \text{ mm}^2$
- Gives 23.04 mm²/contact
- 65% Increase / contact

€ 88.70 (3.49)	
<u> </u>	1
<u> </u>	
<u> </u>	 [1]
<u> </u>	10 (3.4
<u> </u>	88.
<u> </u>	
$\left[\begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	

ELARA

14 ELARA 8-ways with 40 contacts

- Total contacts: 560
- Total Surface: 88.7 * 88.1
- $= 7814.47 \text{ mm}^2$
- Gives 13.95 mm²/contact

Highest density per contact with superior performance

EPXB 5 shells #2 with 2*48 contacts

- Total contacts: 480
- Total surface: 96.90 * 91.80
- $= 8895.42 \text{ mm}^2$
- Gives 18.53 mm²/contact
- 33% Increase / contact

ELARA - Modular Interconnect

Features

- Highly configurable 3U connector
- Modules Twinax, Dual Twinax, 10 pin Mixed Signal, 4 Pin Power, MT Ferrule Single and Multi-mode, 50 Ω Coaxial
- Aluminum, Conductive Composite and Composite shell materials
- Reverse gender pins protected by insulator, scoop proof sockets
- Low outgassing materials
- Micro Hyperboloid contact technology
- Ultra High Density

Benefits

- Weight savings
- Ultra low mating force
- Withstands high shock and vibration space environments
- EMI Shielding for -70 dB attenuation at 10 GHz – Aluminum
- EMI Shielding for -65 dB attenuation at 10 GHz -Composite
- Solderless PCB Termination

Designed to exceed the requirements of

- ESCC 3401
- ESCC 3402
- ECSS-Q-ST-70C
- ECSS-Q-ST-70-02
- ECSS-Q-ST-70-08C
- ECSS-Q-ST-70-38C
- ECSS-Q-70-71

Applications

Backplane architecture

 Point to point Cable Space AGE architecture

ELARA Modules

Development Plan

- 4 Bay In-line Plug and Receptacle
 - Aluminum Housing or Carbon filled LCP Housing (Molded)
- 8 Bay In-line Plug and Receptacle
 - Aluminum Housing or Carbon filled LCP Housing (Molded)
 - Straight and Right Angle PCB mount modules (4 and 8 Bay)
- Target Launch: December 2018

Module Insert Configurations – Developed or In Process

1. Contact Qualification Complete

 Split Quadrax – Two Twinax Cables in a Common Contact Assembly (100 Ω each pair) Twinax – Discrete Twinax with Two / Bay (100 Ω)

2. In Qualification

- Power Module 4 x 5 A Contacts
- Mid-power Module 5 x 3 A Contacts
- Low Speed Signal 10 x 1.5 A contacts

3. In Development

- MT Fiber Optic Ferrule up to a 12 fiber single mode ribbon
- MT Fiber Optic Ferrule up to 12 fiber multi-mode ribbon
- 50Ω Coaxial Module

Split Quadrax and Discrete Twinax Module Qualification

	2
_	
	6

Group	Test Description	Result	Group	Test Description	Result
1	Mechanical and Climatic		3	Assembly Integrity and Plating	
	Sinusoidal Vibration (20g / 10-2,000 Hz)	Pass		High Temperature Storage (150°C for 1,000 hours)	Pass
	Random Vibration (20g RMS / 20-2,000 Hz)	Pass		Mating and Unmating Forces (≤ 120 N)	Pass
	Mechanical Shock (50g / 11ms)	Pass		Electrical Test (IR, DWV, VSWR, IL)	Pass
	Bump (40g / 6ms)	Pass		Mated Shell Conductivity (≤ 2.5 mV)	Pass
	Dry Heat & IR (125°C for 2 hours - IR 100MΩ)	Pass		Rated Current (Contact Resistance)	Pass
	Damp Heat (25 to 55°C to 95% RH)	Pass		Contact Retention (>10N <25N max. 0.3mm shift)	Pass
	Cold Test (-55°C for 2 hours)	Pass		Insert Retention (In Shell)	Pass
	Low Air Pressure (50V @ 33,000m pressure)	Pass	4	High Temperature Measurement	
	Damp Heat Accelerated (25 to 55°C to 95% RH)	Pass		High Temperature Measurement (125°C IR \ge 100M Ω)	Pass
2	Endurance			Return Loss (≤-10dB @ 6.25 GHz)	Pass
	Rapid Change in Temperature (-55°C to 150°C)	Pass		All Groups (Pre and Post Test Group)	
	Electrical Test (IR, DWV, VSWR, IL)	Pass	Pre	Mating and Unmating Forces (≤ 120 N)	Pass
	Contact Retention (>10N <25N max. 0.3mm shift)	Pass	Pre/POST	Electrical Test (IR, DWV, VSWR, IL)	Pass
	Mating and Unmating Forces (≤ 120 N)	Pass	Pre	Near / Far End Cross Talk (NEXT/FEXT) ≤ 4%	Pass
	Electrical Test (IR, DWV, VSWR, IL)	Pass			
	Endurance (500 cycles w/ Savers - 100 wo Savers)	Pass		EMI - Shielding Effectiveness -65dB to 10GHz	Pass
	Mating and Unmating Forces (≤ 120 N)	Pass			
	Mated Shell Conductivity (≤ 2.5 mV)	Pass	1		
	Return Loss (≤-10dB @ 6.25 GHz)	Pass	1		

Qualification Completed Successfully

TDR

- Connector impedance 90Ω to 105Ω
- The low value is due to the pin field capacitance on the test board and the high value is due to the inductance of the connector contact

Eye Pattern Performance

Eye Pattern at 3.75 Gbps (Jitter 25.83 ps)

Eye Pattern at 6.25 Gbps (Jitter 29.5 ps)

High Speed electrical performance of the connection system is further enhanced by a cable to cable application, rather than a cable to PCB termination

EMI / RFI Protection

EMI

Target Attenuation -65 dB @ 10 GHz

EMI Shielding Backshell

EMI Ground Spring

smiths interconnect bringing technology to life

EMI – Shielding Effectiveness to date

- Shielding Effectiveness (-dB) 110 100 Attenuation (-dB) 90 80 70 60 50 8.5 9.0 9.5 10.0 8.0 Frequency (GHz) Attenuation Data Attenuation Target
- Frequency 4 to 8 GHz
- Minimum Shielding Effectiveness -73 dB

- Frequency 8 to 10 GHz
- Minimum Shielding Effectiveness -68 dB
- -70 dB expected with a revised bulkhead EMI gasket

Summary

- ELARA modular connector systems has been demonstrated to meet the high speed signal integrity (based on S Parameter measurement, Impedance and Eye Pattern) and environmental performance for space applications
- The connector system has the flexibility to meet the needs of various interconnection requirements including DTP applications and SpaceWire transmission
- High density of contact packaging
- The additional modules under development will ensure that high speed electrical transmission, low speed signal, power, and fiber optic data are fully supported for space applications
- Higher Signal Data Rates demand a partnership at the system level

more > smithsinterconnect.com

smiths interconnect bringing technology to life

This presentation is an unpublished work, created in 2018 by Smiths Interconnect, all rights reserved and may contain data that is subject to national export controls. Accordingly, it should not be re-used or transmitted without the prior written approval of Smiths Interconnect.